Showing posts with label astrocytes. Show all posts
Showing posts with label astrocytes. Show all posts

Monday, 29 July 2013

Stem cell discovery: Astrocytes could repair stroke brain damage

Featured Article
Academic Journal
Main Category: Stroke
Also Included In: Neurology / Neuroscience;  Stem Cell Research
Article Date: 29 Jul 2013 - 0:00 PDT Current ratings for:
Stem cell discovery: Astrocytes could repair stroke brain damage
not yet ratednot yet rated

Stem cell researchers have discovered that astrocytes may prove useful against stroke and other brain disorders.

Astrocytes - neural cells that form the blood-brain barrier and so control what can and cannot enter the brain from the blood supply - have previously been overlooked in this area of stroke research.

A collaborative study published in Nature Communications suggests that astrocytes can do far more than simply support nerve cells (neurons).

Wenbin Deng, senior author of the study and associate professor of biochemistry and molecular medicine at UC Davis in California, told Medical News Today:

"This exciting research uncovers the brain-protective powers of stem cell-derived astrocytes.

Astrocytes may help to limit the spread of damage after an ischemic brain stroke in patients, and may also help to regenerate and repair damaged brain cells.

Both of these actions may lead to better functional recovery in patients."

Dr. Wenbin Deng added that astrocyte-centered therapy "could also be used for many other nervous system disorders." He said the following could be included in a list of potential targets for therapy:

Stem cell research has focused until now on developing stroke treatments using therapeutic neurons to stimulate electrical impulses in the brain, and restore tissue that has been damaged by oxygen deprivation. Dr. Wenbin Deng said astrocytes had often been considered just "housekeeping" cells that merely support nerve cells.

Astroglia Cell
An astrocyte - more useful than previously thought. Courtesy Dr. Peng Jiang

"But they're actually much more sophisticated," Dr. Wenbin Deng explained. "They are critical to several brain functions and are believed to protect neurons from injury and death. They are not excitable cells like neurons and are easier to harness. We wanted to explore their potential in treating neurological disorders, beginning with stroke."

The UC Davis team faced an immediate challenge, however - there was little existing understanding on which specific types of astrocyte might have therapeutic potential in brain disorders. Also, the principal reason astrocytes had not been investigated in this context was the difficulty in producing them to the purity levels needed for stem cell therapies.

The UC Davis team decided to use a transcription factor protein called Olig2 to differentiate human embryonic stem cells into astrocytes. This approach generated a previously undiscovered type of astrocyte called Olig2PC-Astros - it was almost 100% pure.

"In this study, we report a surprising twist of fate," Dr. Wenbin Deng told MNT. He added:

"Our novel findings are that highly purified Olig2+ progenitors can give rise to astrocytes and that these astrocytes derived from highly purified Olig2+ progenitors are different from the astrocytes described in any previous work."

In short, the team's quest for a sufficiently pure astrocyte had, by serendipity, also led them to isolate a previously unknown astrocyte with particularly therapeutic properties.

Researchers used three groups of rats with ischemic brain injuries to compare the effects of Olig2PC-Astros, another type of astrocyte called NPC-Astros, and no treatment. The animals were placed in a water maze to assess their learning and memory.

Two weeks after transplantation, the rats receiving Olig2PC-Astros navigated the maze significantly quicker than the other groups. This group also exhibited higher levels of brain-derived neurotrophic factor (BDNF), a protein associated with nerve growth and resilience.

Cell cultures were also used to measure what protection the astrocytes could provide to neurons against the oxidative stress that contributes to brain injury following stroke.

When exposed to hydrogen peroxide, both types of astrocytes provided some protection but the Olig2PC-Astros showed greater antioxidant effects. Further investigation indicated higher levels of the protein Nrf2, which increases antioxidant activity in mouse neurons.

Additionally, the Olig2PC-Astros cells remained in brain areas where they were transplanted, did not differentiate into neurons or other cell types and formed no tumors.

Jan Nolta, director of the UC Davis Institute for Regenerative Cures, commented: "Dr. Deng's team has shown that this new method for deriving astrocytes from embryonic stem cells creates a cell population that is more pure and functionally superior to the standard method for astrocyte derivation."

Jan Nolta added:

"The functional improvement seen in the brain injury models is impressive, as are the higher levels of BDNF.

I will be excited to see this work extended to other brain disease models such as Huntington's disease and others, where it is known that BDNF has a positive effect."

Written by Nick Valentine


Copyright: Medical News Today
Not to be reproduced without permission of Medical News Today Visit our stroke section for the latest news on this subject. "hESC-derived Olig2+ progenitors generate a subtype of astroglia with protective effects against ischaemic brain injury," Nature Communications, 23 July 2013. Full text Please use one of the following formats to cite this article in your essay, paper or report:

MLA

Valentine, Nick. "Stem cell discovery: Astrocytes could repair stroke brain damage." Medical News Today. MediLexicon, Intl., 29 Jul. 2013. Web.
29 Jul. 2013. APA

Please note: If no author information is provided, the source is cited instead.


'Stem cell discovery: Astrocytes could repair stroke brain damage'

Please note that we publish your name, but we do not publish your email address. It is only used to let you know when your message is published. We do not use it for any other purpose. Please see our privacy policy for more information.

If you write about specific medications or operations, please do not name health care professionals by name.

All opinions are moderated before being included (to stop spam). We reserve the right to amend opinions where we deem necessary.

Contact Our News Editors

For any corrections of factual information, or to contact the editors please use our feedback form.

Please send any medical news or health news press releases to:

Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.



View the original article here

Friday, 26 July 2013

Stem cell study uncovers brain-protective powers of astrocytes

Main Category: Stroke
Also Included In: Stem Cell Research;  Neurology / Neuroscience
Article Date: 25 Jul 2013 - 1:00 PDT Current ratings for:
Stem cell study uncovers brain-protective powers of astrocytes
not yet ratednot yet rated

One of regenerative medicine's greatest goals is to develop new treatments for stroke. So far, stem cell research for the disease has focused on developing therapeutic neurons - the primary movers of electrical impulses in the brain - to repair tissue damaged when oxygen to the brain is limited by a blood clot or break in a vessel. New UC Davis research, however, shows that other cells may be better suited for the task.

Published in the journal Nature Communications, the large, collaborative study found that astrocytes - neural cells that transport key nutrients and form the blood-brain barrier - can protect brain tissue and reduce disability due to stroke and other ischemic brain disorders.

"Astrocytes are often considered just 'housekeeping' cells because of their supportive roles to neurons, but they're actually much more sophisticated," said Wenbin Deng, associate professor of biochemistry and molecular medicine at UC Davis and senior author of the study. "They are critical to several brain functions and are believed to protect neurons from injury and death. They are not excitable cells like neurons and are easier to harness. We wanted to explore their potential in treating neurological disorders, beginning with stroke."

Deng added that the therapeutic potential of astrocytes has not been investigated in this context, since making them at the purity levels necessary for stem cell therapies is challenging. In addition, the specific types of astrocytes linked with protecting and repairing brain injuries were not well understood.

The team began by using a transcription factor (a protein that turns on genes) known as Olig2 to differentiate human embryonic stem cells into astrocytes. This approach generated a previously undiscovered type of astrocyte called Olig2PC-Astros. More importantly, it produced those astrocytes at almost 100 percent purity.

The researchers then compared the effects of Olig2PC-Astros, another type of astrocyte called NPC-Astros and no treatment whatsoever on three groups of rats with ischemic brain injuries. The rats transplanted with Olig2PC-Astros experienced superior neuroprotection together with higher levels of brain-derived neurotrophic factor (BDNF), a protein associated with nerve growth and survival. The rats transplanted with NPC-Astros or that received no treatment showed much higher levels of neuronal loss.

To determine whether the astrocytes impacted behavior, the researchers used a water maze to measure the rats' learning and memory. In the maze, the rats were required to use memory rather than vision to reach a destination. When tested 14 days after transplantation, the rats receiving Olig2PC-Astros navigated the maze in significantly less time than the rats that received NPC-Astros or no treatment.

The investigators used cell culture experiments to determine whether the astrocytes could protect neurons from oxidative stress, which plays a significant role in brain injury following stroke. They exposed neurons co-cultured with both types of astrocytes to hydrogen peroxide to replicate oxidative stress. They found that, while both types of astrocytes provided protection, the Olig2PC-Astros had greater antioxidant effects. Further investigation showed that the Olig2PC-Astros had higher levels of the protein Nrf2, which increased antioxidant activity in the mouse neurons.

"We were surprised and delighted to find that the Olig2PC-Astros protected neurons from oxidative stress in addition to rebuilding the neural circuits that improved learning and memory," said Deng.

The investigators also investigated the genetic qualities of the newly identified astrocytes. Global microarray studies showed they were genetically similar to the standard NPC-Astros. The Olig2PC-Astros, however, expressed more genes (such as BDNF and vasoactive endothelial growth factor, or VEGF) associated with neuroprotection. Many of these genes help regulate the formation and function of synapses, which carry signals between neurons.

Additional experiments showed that both the Olig2PC-Astros and NPC-Astros accelerated synapse development in mouse neurons. The Olig2PC-Astros, however, had significantly greater protective effects over the NPC-Astros.

In addition to being therapeutically helpful, the Olig2PC-Astros showed no tumor formation, remained in brain areas where they were transplanted and did not differentiate into other cell types, such as neurons.

"Dr. Deng's team has shown that this new method for deriving astrocytes from embryonic stem cells creates a cell population that is more pure and functionally superior to the standard method for astrocyte derivation," said Jan Nolta, director of the UC Davis Institute for Regenerative Cures. "The functional improvement seen in the brain injury models is impressive, as are the higher levels of BDNF. I will be excited to see this work extended to other brain disease models such as Huntington's disease and others, where it is known that BDNF has a positive effect."

Deng added that the results could lead to stem cell treatments for many neurodegenerative diseases.

"By creating a highly purified population of astrocytes and showing both their therapeutic benefits and safety, we open up the possibility of using these cells to restore brain function for conditions such as Alzheimer's disease, epilepsy, traumatic brain disorder, cerebral palsy and spinal cord injury," said Deng.

Article adapted by Medical News Today from original press release. Click 'references' tab above for source.
Visit our stroke section for the latest news on this subject.

Peng Jiang of UC Davis and Shriners Hospitals for Children was the study lead author. Deng and Jiang's co-authors were Chen Chen, Olga Chechneva, Seung-Hyuk Chung and David Pleasure of UC Davis and Shriners Hospitals for Children; Quanguang Zhang and Ruimin Wang of the Medical College of Georgia; Mahendra Rao of the National Institutes of Health (NIH) Center for Regenerative Medicine; and Ying Liu of the University of Texas Health Science Center.

This research was funded in part by the NIH (grants R01NS061983, R01ES015988 and R01NS025044), National Multiple Sclerosis Society, Shriners Hospitals for Children, California Institute for Regenerative Medicine, Memorial Hermann Foundation (Staman Ogilvie Fund) and the Bentsen Stroke Center.

University of California - Davis Health System

Please use one of the following formats to cite this article in your essay, paper or report:

MLA

University of California - Davis Health System. "Stem cell study uncovers brain-protective powers of astrocytes." Medical News Today. MediLexicon, Intl., 25 Jul. 2013. Web.
26 Jul. 2013. APA

Please note: If no author information is provided, the source is cited instead.


'Stem cell study uncovers brain-protective powers of astrocytes'

Please note that we publish your name, but we do not publish your email address. It is only used to let you know when your message is published. We do not use it for any other purpose. Please see our privacy policy for more information.

If you write about specific medications or operations, please do not name health care professionals by name.

All opinions are moderated before being included (to stop spam). We reserve the right to amend opinions where we deem necessary.

Contact Our News Editors

For any corrections of factual information, or to contact the editors please use our feedback form.

Please send any medical news or health news press releases to:

Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.



View the original article here