Showing posts with label macular. Show all posts
Showing posts with label macular. Show all posts

Tuesday, 20 August 2013

Critical role discovered for the complement system in early macular degeneration

Main Category: Eye Health / Blindness
Also Included In: Seniors / Aging
Article Date: 20 Aug 2013 - 0:00 PDT Current ratings for:
Critical role discovered for the complement system in early macular degeneration
not yet ratednot yet rated

In a study published on line in the journal Human Molecular Genetics, Drs. Donita Garland, Rosario Fernandez-Godino, and Eric Pierce of the Ocular Genomics Institute at the Massachusetts Eye and Ear, Harvard Medical School, along with their colleagues, reported the unexpected finding that in mice genetically engineered to have an inherited form of macular degeneration, turning off the animals' complement system, a part of the immune system, prevented the disease.

Macular degenerations, which occur in several forms, are important causes of vision loss. Juvenile or early-onset macular degeneration includes several inherited disorders that can affect children and young adults. In contrast, age-related macular degeneration (AMD) affects older individuals; it is the leading cause of blindness for individuals over 65 years of age in developed countries, and its prevalence is increasing worldwide. Both inherited macular degeneration and AMD lead to the loss of central vision. While therapies exist for some forms of late AMD, and nutritional supplements can slow the progression of early AMD for some patients, improved therapies to prevent vision loss from these disorders are needed.

This is the first report to demonstrate a role for the complement system in an inherited macular degeneration. Previous genetic studies have shown that variants in the genes that encode several complement system components are important risk factors for AMD. Based on this, drugs that inhibit specific complement system activities are being tested clinically as treatments for AMD. However, it is not entirely clear how alterations in complement system components lead to AMD.

The new results reported suggest that complement activation by abnormalities in the extracellular matrix or the scaffold secreted by retinal cells plays an important role in the formation of basal deposits, one of the earliest stages of macular degeneration. Basal deposits are precursors of drusen, which appear as spots in the retina on clinical examination, and are accumulations of proteins and lipids outside the retinal cells; their presence is the first clinical indication of a risk of developing macular degeneration.

The findings are important because they suggest that inherited macular degenerations share common features with AMD, such as a complement-mediated response to abnormal extracellular matrix. The results also suggest that alterations in the activity of the complement system are involved in the earliest stages of disease pathogenesis. This finding has important implications for the use of drugs that modulate the complement system for treating macular degenerations.

For these studies, the investigators used a mouse model of the inherited macular dystrophy Doyne Honeycomb Retinal Dystrophy/Malattia Leventinese (DHRD/ML) which is caused by the p.Arg345Trp mutation in the EFEMP1 gene. This mutation leads to extensive drusen in patients with DHRD/ML, and the gene targeted Efemp1R345W/R345W mice develop extensive basal deposits.

As a first step in their studies, Dr. Garland and colleagues used proteomic techniques to identify the proteins present in the basal deposits of the Efemp1R345W/R345W mice. Like they do in people, these deposits form between the retinal pigment epithelial cells and their basement membrane, which is called Bruch's membrane and is composed of extracellular matrix. These studies showed that the basal deposits are composed of normal extracellular matrix components that are present in abnormal amounts. This is logical because the EFEMP1 protein is secreted by retinal cells and is thought to be required for maturation of elastin fibers, which are part of Bruch's membrane.

The proteomic analyses also suggest that the altered extracellular matrix stimulates a local immune response, including activation of the complement system. The complement system is part of our innate immune system, and helps fend off infections, but under certain circumstances can also lead to cell and tissue damage.

The investigators plan to continue their studies to help identify additional treatments to prevent vision loss from macular degenerations.

Article adapted by Medical News Today from original press release. Click 'references' tab above for source.
Visit our eye health / blindness section for the latest news on this subject.

The Mass. Eye and Ear team applied the power of mouse genetics to study the role of complement in basal deposit formation, and generated Efemp1R345W/R345W:C3-/- double mutant mice, which have the disease-causing mutation in Efemp1 and also lack the key complement component C3. Without C3, the complement system cannot be activated. In contrast to their single mutant Efemp1-R345W cousins, the double mutant Efemp1R345W/R345W:C3-/- mice did not develop basal deposits, demonstrating that the complement system is required for formation of basal deposits.

Grant support: This work was supported by grants from the Rosanne Silbermann Foundation, Research to Prevent Blindness, and the Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School.

Mouse genetics and proteomic analyses demonstrate a critical role for complement in a model of DHRD/ML, an inherited macular degeneration

Authors: Donita L. Garland, Rosario Fernandez-Godino, Inderjeet Kaur, Kaye D. Speicher, James M. Harnly, John D. Lambris, David W. Speicher, Eric A. Pierce; Hum. Mol. Genet. (2013) doi: 10.1093/hmg/ddt395 First published online: August 13, 2013

Massachusetts Eye and Ear Infirmary

Please use one of the following formats to cite this article in your essay, paper or report:

MLA

Massachusetts Eye and Ear Infirmary. "Critical role discovered for the complement system in early macular degeneration." Medical News Today. MediLexicon, Intl., 20 Aug. 2013. Web.
20 Aug. 2013. APA

Please note: If no author information is provided, the source is cited instead.


'Critical role discovered for the complement system in early macular degeneration'

Please note that we publish your name, but we do not publish your email address. It is only used to let you know when your message is published. We do not use it for any other purpose. Please see our privacy policy for more information.

If you write about specific medications or operations, please do not name health care professionals by name.

All opinions are moderated before being included (to stop spam). We reserve the right to amend opinions where we deem necessary.

Contact Our News Editors

For any corrections of factual information, or to contact the editors please use our feedback form.

Please send any medical news or health news press releases to:

Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.



View the original article here

Monday, 19 August 2013

Good news for people who lose their foveal vision due to macular diseases

Main Category: Eye Health / Blindness
Also Included In: Seniors / Aging
Article Date: 19 Aug 2013 - 0:00 PDT Current ratings for:
Good news for people who lose their foveal vision due to macular diseases
not yet rated5 stars

When something gets in the way of our ability to see, we quickly pick up a new way to look, in much the same way that we would learn to ride a bike, according to a new study published in the Cell Press journal Current Biology.

Our eyes are constantly on the move, darting this way and that four to five times per second. Now researchers have found that the precise manner of those eye movements can change within a matter of hours. This discovery by researchers from the University of Southern California might suggest a way to help those with macular degeneration better cope with vision loss.

"The system that controls how the eyes move is far more malleable than the literature has suggested," says Bosco Tjan of the University of Southern California. "We showed that people with normal vision can quickly adjust to a temporary occlusion of their foveal vision by adapting a consistent point in their peripheral vision as their new point of gaze."

The fovea refers to the small, center-most portion of the retina, which is responsible for our high-resolution vision. We move our eyes to direct the fovea to different parts of a scene, constructing a picture of the world around us. In those with age-related macular degeneration, progressive loss of foveal vision leads to visual impairment and blindness.

In the new study, MiYoung Kwon, Anirvan Nandy, and Tjan simulated a loss of foveal vision in six normally sighted young adults by blocking part of a visual scene with a gray disc that followed the individuals' eye gaze. Those individuals were then asked to complete demanding object-following and visual-search tasks. Within three hours of working on those tasks, people showed a remarkably fast and spontaneous adjustment of eye movements. Once developed, that change in their "point of gaze" was retained over a period of weeks and was reengaged whenever their foveal vision was blocked.

Tjan and his team say they were surprised by the rate of this adjustment. They note that patients with macular degeneration frequently do adapt their point of gaze, but in a process that takes months, not days or hours. They suggest that practice with a visible gray disc like the one used in the study might help speed that process of visual rehabilitation along. The discovery also reveals that the oculomotor (eye movement) system prefers control simplicity over optimality.

"Gaze control by the oculomotor system, although highly automatic, is malleable in the same sense that motor control of the limbs is malleable," Tjan says. "This finding is potentially very good news for people who lose their foveal vision due to macular diseases. It may be possible to create the right conditions for the oculomotor system to quickly adjust," Kwon adds.

Article adapted by Medical News Today from original press release. Click 'references' tab above for source.
Visit our eye health / blindness section for the latest news on this subject. Please use one of the following formats to cite this article in your essay, paper or report:

MLA

Press, Cell. "Good news for people who lose their foveal vision due to macular diseases." Medical News Today. MediLexicon, Intl., 19 Aug. 2013. Web.
19 Aug. 2013. APA

Please note: If no author information is provided, the source is cited instead.


'Good news for people who lose their foveal vision due to macular diseases'

Please note that we publish your name, but we do not publish your email address. It is only used to let you know when your message is published. We do not use it for any other purpose. Please see our privacy policy for more information.

If you write about specific medications or operations, please do not name health care professionals by name.

All opinions are moderated before being included (to stop spam). We reserve the right to amend opinions where we deem necessary.

Contact Our News Editors

For any corrections of factual information, or to contact the editors please use our feedback form.

Please send any medical news or health news press releases to:

Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.



View the original article here