Showing posts with label division. Show all posts
Showing posts with label division. Show all posts

Thursday, 15 August 2013

Potential for new antibiotics following finding that protein delays cell division in bacteria

Main Category: Infectious Diseases / Bacteria / Viruses
Also Included In: Genetics
Article Date: 14 Aug 2013 - 0:00 PDT Current ratings for:
Potential for new antibiotics following finding that protein delays cell division in bacteria
not yet ratednot yet rated

In 1958 a group of scientists working in Denmark made the striking observation that bacterial cells are about twice as large when they are cultured on a rich nutrient source than when they are cultured on a meager one. When they are shifted from a nutrient-poor environment to a nutrient-rich one, they bulk up until they have achieved a size more appropriate to their new growth conditions.

It has taken 60 years to figure out how the bacteria are able to sample their surroundings and alter their cell cycles so that they grow to a size suited to the environment.

In 2007 Petra Levin, PhD, a biologist at Washington University in St. Louis, reported in Cell that a soil bacterium named Bacillis subtilis has a protein that senses how much food is available and, when food is plentiful, temporarily blocks the assembly of a constriction ring that pinches a cell in two to create two daughter cells.

Now Norbert Hill, a graduate student in her group, reports in a recent online edition of PLoS Genetics that Escherichia coli uses a similar protein to help ensure cell size is coordinated with nutrient conditions.

Delaying division even just a little bit leads to an increase in daughter cell size. Once stabilized at the new size, cells take advantage of abundant nutrient sources to increase and multiply, doubling their population at regular intervals until the food is exhausted.

Because both the B. subtilis and E. coli proteins interact with essential components of the division machinery, understanding how they function will help in the discovery of antibiotics that block cell division permanently. A group in Cambridge, England, is already working to crystallize the E. coli protein docked on one of the essential components of the constriction ring.

If they are successful they may be able to see exactly how the protein interferes with the ring's assembly. An antibiotic could then be designed that would use the same mechanism to prevent division entirely, killing the bacteria.

Why do bacteria get bigger on a good food source?

Bacteria increase and multiply by a process called binary fission. Each cell grows and then the divides in the middle to produce two daughter cells. What could be simpler?

But the closer you look, the less simple it becomes. For binary fission to work the cell must make a copy of its circular chromosome, unlink and separate the two chromosomes to create a gap between them, assemble a constriction ring in the middle of the cell and coordinate the growth of new cell membrane as the ring cinches tight and pinches the mother cell in two. To complicate matters, bacteria don't necessarily do these steps one by one but can instead work on several steps simultaneously.

Most of the time the goal is to produce daughters the same size as the mother cell. But when food is plentiful, bacteria start making more copies of their DNA (as many as 12) in anticipation of divisions to come, and they can't easily cram all the extra DNA into standard-sized cells. So they grow bigger to accommodate the extra genetic material and remain large as long as the food lasts.

The inventory of partly copied chromosomes fuels rapid population growth, because a cell doesn't start from scratch when it needs another copy of its chromosome. Under optimum conditions, E. coli, for example, divides once every 17 minutes. If they are allowed to grow unhindered this means that in 24 hours 1 bacterium becomes about 5 x 1021 bacteria (that is 5 with 21 zeros after it.)

How do bacteria know the pickings are rich?

In B. subtilis and E. coli the signal is a modified sugar called UDP-glucose. Presumably, the richer the growth medium, the higher the level of this sugar inside the cell.

In both bacteria UDP-glucose binds to a protein and the sugar-protein complex then interferes with the assembly of the constriction ring. In the case of B. subtilis the protein is called UgtP and in the case of E. coli it is OpgH.

"It's interesting," Hill said, "that both organisms, which are more different from one another than we are from bakers' yeast, are using the same system to coordinate changing size in response to nutrient availability."

UgtP and OpgH are bifunctional proteins that are "moonlighting" as elements of the cell-division control systems. In both cases their day jobs are to help build the cell envelope. "We think they are communicating not only how much glucose there is in the cell, but also how fast the cell is growing," Levin said. "The sensor says not only is food abundant, but we're also growing really fast, so we should be bigger."

Both proteins delay division by interfering with FtsZ, the first protein to move to the division site, where it assembles into a scaffold and recruits other proteins to form a constriction ring.

"Very little is known about the assembly of the ring," Hill said. "There are a dozen essential division proteins and we don't know what half of them do. Nor do we understand how the ring develops enough force to constrict."

"We do know FtsZ exists in two states," Hill added. "One is a small monomer and the other is many monomers linked together to form a multi-unit polymer. We think the polymers bind laterally to form a scaffold and then, with the help of other proteins, make a meshwork that goes around the cell.

UgtP and OpgH both interfere with the ability of FtsZ to form the longer polymers necessary for assembly of the constriction ring.

When nutrient levels are low, UgtP and OpgH are sequestered away from the division machinery. FtsZ is then free to assemble into the scaffold supporting the constriction ring so the cell can divide. Because division proceeds unimpeded, cells are smaller when they divide.

What about other bacteria?

This control system helps to explain the 60-year-old observation that bacterial cells get bigger when they are shifted to a nutrient-rich medium.

Comparing the mechanisms that govern cell division in E. coli and B. subtilis reveals conserved aspects of cell size control, including the use of UDP-glucose, a molecule common to all domains of life, as a proxy for nutrient availability, and the use of moonlighting proteins to couple growth-rate-dependent phenomena to the central metabolism.

But much more is known about these model organisms, which many labs study, than the average bacterium. Nobody is sure how many species of bacteria there are - somewhere between 10 million and a billion at a guess - and they don't all divide the way B. subtilis and E. coli do.

The whimsically named giant bacterium Epulopiscium fiselsoni ("Fishelson's guest at a fish's banquet") that lives in the guts of sturgeonfish, has the gene for FtsZ but doesn't divide by binary fission. And then there are bacteria like the pathogen Chlamydia traachomatis that don't have a gene for anything like FtsZ. "We don't know how these bacteria divide, much less maintain an appropriate cell size," Levin said.

Article adapted by Medical News Today from original press release. Click 'references' tab above for source.
Visit our infectious diseases / bacteria / viruses section for the latest news on this subject. Please use one of the following formats to cite this article in your essay, paper or report:

MLA

Washington University in St. Louis. "Potential for new antibiotics following finding that protein delays cell division in bacteria." Medical News Today. MediLexicon, Intl., 14 Aug. 2013. Web.
14 Aug. 2013. APA

Please note: If no author information is provided, the source is cited instead.


'Potential for new antibiotics following finding that protein delays cell division in bacteria'

Please note that we publish your name, but we do not publish your email address. It is only used to let you know when your message is published. We do not use it for any other purpose. Please see our privacy policy for more information.

If you write about specific medications or operations, please do not name health care professionals by name.

All opinions are moderated before being included (to stop spam). We reserve the right to amend opinions where we deem necessary.

Contact Our News Editors

For any corrections of factual information, or to contact the editors please use our feedback form.

Please send any medical news or health news press releases to:

Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.



View the original article here

Friday, 26 July 2013

To ensure proper cell division, centrioles must be kept in check

Main Category: Genetics
Also Included In: Cancer / Oncology;  Biology / Biochemistry
Article Date: 25 Jul 2013 - 0:00 PDT Current ratings for:
To ensure proper cell division, centrioles must be kept in check
not yet ratednot yet rated

The duplication of cellular contents and their distribution to two daughter cells during cell division are amongst the most fundamental features of all life on earth. How cell division occurs and is coordinated with organismal development is a subject of intense research interest, as is how this process malfunctions in the development of tumors. Alex Dammermann and his team from the Max F. Perutz Laboratories (MFPL) of the University of Vienna and the Medical University of Vienna, together with his collaborators from the Institute of Molecular Pathology (IMP), have been investigating how the duplication of one key component of the cell division machinery, named centrioles, is coordinated with the cell cycle - the series of events that lead to a cell's division. Their results are published in the journal Current Biology.

Centrioles - orchestrators of cell division

When our cells divide, their genetic material - in the form of X-shaped chromosomes - is aligned in the middle of the cell and segregated to opposite poles of the cell by a spindle of long tubular fibers, so-called microtubules. The structures that organize the two poles of the spindle in animal cells are called centrosomes. Each centrosome consists of two cylindrically shaped centrioles that are positioned perpendicular to each other and surrounded by an amorphous dense mass called the pericentriolar material (PCM). At the end of cell division, the two centrioles inherited by each daughter cell separate, and later each of them forms a new centriole. This ensures that another bipolar spindle can be set up by two centrosomes when the cell divides again. Precise control of centriole separation and duplication is therefore essential for successful cell division. Abnormal centrosome numbers are commonly observed in human cancers and are thought to be at least in part responsible for the improper distribution of the genetic material that is a hallmark of many cancer cells.

The PCM -the glue that keeps centrioles together

Until now, it was unclear how centrioles are held together and how their separation at the end of cell division is so precisely regulated. Gabriela Cabral, a PhD student in the lab of Alex Dammermann at the Center for Molecular Biology of the University of Vienna, explains: "Many people thought that centrioles are held together by the same glue as chromosomes, a substance called cohesin, which is destroyed during cell division. We found this to be true only in the very specialized circumstances surrounding fertilization. In all other cases, as in the subsequent cell divisions following fertilization, the glue that holds centrioles together is actually the PCM." These findings explain previously conflicting data on the mechanism of centriole separation. Alex Dammermann adds: "The surprising finding that there are actually two cellular mechanisms for controlling centriole separation was only possible because we use the nematode worm C. elegans as our model organism. Would we have used cell cultures we would have never found that centriole separation works differently in different developmental contexts".

Stem cell fate and cancer

The dense mass of the PCM that entraps the sister centrioles is itself disassembled at the end of cell division. The microtubules that are responsible for separating the genetic material also appear to be involved in pulling the PCM and centrioles apart. This tightly regulated process is critical to ensure that both daughter cells will later have the correct centrosome numbers when they divide. This is important to avoid missegregation of the genetic material, which may result in cell death or tumor formation. Interestingly, centrosomes have also been linked to the segregation of cell fate determinants. Gabriela Cabral explains: "When a stem cell divides, it doesn't produce two identical daughter cells as normal cells do. It produces another stem cell and a daughter cell that may differentiate into one of many specialized cell types." What these cell fate determinants are and how they are distributed when a stem cell divides is another big question. However, it is known that centrosomes are also involved in this process. Alex Dammermann says: "Our results show that the PCM still harbors many surprises. One of our current research goals is to examine how this largely mysterious accumulation of cellular material is organized and we hope that a better knowledge of this will help us understand how centrosomes perform their manifold functions in the cell."

Article adapted by Medical News Today from original press release. Click 'references' tab above for source.
Visit our genetics section for the latest news on this subject.

Original publication in Current Biology: Gabriela Cabral, Sabina Sanegre Sans, Carrie R. Cowan, and Alexander Dammermann: Multiple mechanisms contribute to centriole separation in C. elegans. Current Biology (July 2013). DOI: http://dx.doi.org/10.1016/j.cub.2013.06.043

University of Vienna

Please use one of the following formats to cite this article in your essay, paper or report:

MLA

University of Vienna. "To ensure proper cell division, centrioles must be kept in check." Medical News Today. MediLexicon, Intl., 25 Jul. 2013. Web.
26 Jul. 2013. APA

Please note: If no author information is provided, the source is cited instead.


'To ensure proper cell division, centrioles must be kept in check'

Please note that we publish your name, but we do not publish your email address. It is only used to let you know when your message is published. We do not use it for any other purpose. Please see our privacy policy for more information.

If you write about specific medications or operations, please do not name health care professionals by name.

All opinions are moderated before being included (to stop spam). We reserve the right to amend opinions where we deem necessary.

Contact Our News Editors

For any corrections of factual information, or to contact the editors please use our feedback form.

Please send any medical news or health news press releases to:

Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.



View the original article here