Showing posts with label dystrophy. Show all posts
Showing posts with label dystrophy. Show all posts

Saturday, 21 September 2013

The Arguing Over PTC124 And Duchenne Muscular Dystrophy

Does it matter how a drug works, if it works? PTC Therapeutics (PTCT) seems bent on giving everyone an answer to that question, because there sure seem to be a lot of questions about how ataluren (PTC124), its Duchenne Muscular Dystrophy [DMD] therapy, acts. This article [pdf] at Nature Biotechnology does an excellent job explaining the details.

Premature "stop" codons in the DNA of DMD patients, particularly in the dystrophin gene, are widely thought to be one of the underlying problems in the disease. (The same mechanism is believed to operate in many other genetic-mutation-driven conditions as well. Ataluren is supposed to promote "read-through" of these to allow the needed protein to be produced anyway. That's not a crazy idea at all - there's been a lot of thought about ways to do that, and several aminoglycoside antibiotics have been shown to work through that mechanism. Of that class, gentamicin has been given several tries in the clinic, to ambiguous effect so far.

So screening for a better enhancer of stop codon read-through seems like it's worth a shot for a disease with so few therapeutic options. PTC did this using a firefly luciferase (Fluc) reporter assay. As with any assay, there are plenty of opportunities to get false positives and false negatives. Firefly luciferase, as a readout, suffers from instability under some conditions. And if its signal is going to wink out on its own, then a compound that stabilizes it will look like a hit in your assay system. Unfortunately, there's no particular market in humans for a compound that just stabilizes firefly luciferase.

That's where the argument is with ataluren. Papers have appeared from a team at the NIH detailing trouble with the FLuc readout. That second paper (open access) goes into great detail about the mechanism, and it's an interesting one. FLuc apparently catalyzes a reaction between PTC124 and ATP, to give a new mixed anhydride adduct that is a powerful inhibitor of the enzyme. The enzyme's normal mechanism involves a reaction between luciferin and ATP, and since luciferin actually looks like something you'd get in a discount small-molecule screening collection, you have to be alert to something like this happening. The inhibitor-FLuc complex keeps the enzyme from degrading, but the new PTC124-derived inhibitor itself is degraded by Coenzyme A - which is present in the assay mixture, too. The end result is more luciferase signal that you expect versus the controls, which looks like a hit from your reporter gene system - but isn't. PTC's scientists have replied to some of these criticisms here.

Just to add more logs to the fire, other groups have reported that PTC124 seems to be effective in restoring read-through for similar nonsense mutations in other genes entirely. But now there's another new paper, this one from a different group at Dundee, claiming that ataluren fails to work through its putative mechanism under a variety of conditions, which would seem to call these results into question as well. Gentamicin works for them, but not PTC124. Here's the new paper's take-away:

In 2007 a drug was developed called PTC124 (latterly known as Ataluren), which was reported to help the ribosome skip over the premature stop, restore production of functional protein, and thereby potentially treat these genetic diseases. In 2009, however, questions were raised about the initial discovery of this drug; PTC124 was shown to interfere with the assay used in its discovery in a way that might be mistaken for genuine activity. As doubts regarding PTC124's efficacy remain unresolved, here we conducted a thorough and systematic investigation of the proposed mechanism of action of PTC124 in a wide array of cell-based assays. We found no evidence of such translational read-through activity for PTC124, suggesting that its development may indeed have been a consequence of the choice of assay used in the drug discovery process.

Now this is a mess, and it's complicated still more by the not-so-impressive performance of PTC124 in the clinic. Here's the Nature Biotechnology article's summary:

In 2008, PTC secured an upfront payment of $100 million from Genzyme (now part of Paris-based Sanofi) in return for rights to the product outside the US and Canada. But the deal was terminated following lackluster data from a phase 2b trial in DMD. Subsequently, a phase 3 trial in cystic fibrosis also failed to reach statistical significance. Because the drug showed signs of efficacy in each indication, however, PTC pressed ahead. A phase 3 trial in DMD is now underway, and a second phase 3 trial in cystic fibrosis will commence shortly.

It should be noted that the read-through drug space has other players in it as well. Prosensa/GSK and Sarepta are in the clinic with competing antisense oligonucleotides targeting a particular exon/mutation combination, although this would probably taken them into other subpopulations of DMD patients than PTC is looking to treat.

If they were to see real efficacy, PTC could have the last laugh here. To get back to the first paragraph of this post, if a compound works, well, the big argument has just been won. The company has in vivo data to show that some gene function is being restored, as well they should (you don't advance a compound to the clinic just on the basis of in vitro assay numbers, no matter how they look). It could be that the compound is a false positive in the original assay but manages to work through some other mechanism, although no one knows what that might be.

But as you can see, opinion is very much divided about whether PTC124 works at all in the real clinical world. If it doesn't, then the various groups detailing trouble with the early assays will have a good case that this compound never should have gotten as far as it did.


View the original article here

Thursday, 1 August 2013

Myotonic dystrophy may be due to an imbalance of metabolism

Main Category: Muscular Dystrophy / ALS
Article Date: 31 Jul 2013 - 0:00 PDT Current ratings for:
Myotonic dystrophy may be due to an imbalance of metabolism
not yet ratednot yet rated

When you sprint, the "fast" muscle fibers give you that winning kick. In a marathon or just day-to-day activity, however, the "slow," or type 1 fibers, keep you going for hours.

In people with myotonic dystrophy, the second most common form of muscular dystrophy and the one most likely to occur in adults, these slow or type 1 fibers do not work well, wasting away as the genetic disorder takes its grim toll. In a report that appears online in the Proceedings of the National Academy of Sciences, Dr. Thomas A. Cooper, professor of pathology & immunology at Baylor College of Medicine, and Dr. Zhihua Gao, a postdoctoral associate at BCM, showed how an aberrant alternative splicing program changes the form of an enzyme (pyruvate kinase of PKM) involved in the fundamental metabolism of these muscle cells, leaving them unable to sustain exercise. The enzyme reverts to the embryonic form (PKM2), which changes its activity in the cell.

Alternative splicing is one of the secrets as to how the estimated 25,000 human genes code for the 100,000 or more proteins important to the functioning of the human body. For one gene to make different proteins, it has to alter the genetic message, choosing which coding parts of the gene called exons are included in the protein "recipe" used by the cell's protein-making machinery.

"In the case of PKM2, this enzyme represents a shift back to the fetal splicing pattern," said Cooper. "What was striking was that if you look at the histology (the tissues seen at a microscopic level) of the skeletal muscle, only the slow fiber types - the ones affected in myotonic dystrophy - have this splicing event switch." The slow fibers are those most affected in myotonic dystrophy.

"We don't know what it is doing to the metabolism, but it seems to be pushing it in the opposite direction from what slow fibers do," said Cooper. "This is related to the loss of slow fibers in myotonic dystrophy."

To figure out how this happens, Cooper and his colleagues used antisense oligonucleotides (snippets of genetic material designed to target specific areas of a gene) to bind to the precursor RNA (genetic material that carries the code for a protein) for PKM, and thus force it in the other direction - to the embryonic form.

"Doing this, we showed there could be a change in metabolism in myotonic dystrophy and we showed it in the whole animal," said Cooper.

Myotonic dystrophy occurs when the nucleotides CTG (cytosine, thymine, guanine) repeat an abnormal number of times. When the CTG in the DNA is transcribed into CUG in RNA, the resulting aberrant protein is toxic and disrupts the activity of RNA factors (MBNL1 AND CELF1), which are two RNA splicing factors. The resultant splicing changes somehow drive the skeletal and heart muscle wasting seen in the disease.

"To my knowledge, this is the first time anyone has looked at this alternative splicing event and associated it with a disease other than cancer," said Cooper. "The muscle wasting in this disease could be due to an imbalance of metabolism."

Article adapted by Medical News Today from original press release. Click 'references' tab above for source.
Visit our muscular dystrophy / als section for the latest news on this subject.

Funding for this work came from the Muscular Dystrophy Association and the National Institutes of Health (Grants R01AR45653, R01HL045565, R01AR060733).

Baylor College of Medicine

Please use one of the following formats to cite this article in your essay, paper or report:

MLA

Baylor College of Medicine. "Myotonic dystrophy may be due to an imbalance of metabolism." Medical News Today. MediLexicon, Intl., 31 Jul. 2013. Web.
31 Jul. 2013. APA

Please note: If no author information is provided, the source is cited instead.


'Myotonic dystrophy may be due to an imbalance of metabolism'

Please note that we publish your name, but we do not publish your email address. It is only used to let you know when your message is published. We do not use it for any other purpose. Please see our privacy policy for more information.

If you write about specific medications or operations, please do not name health care professionals by name.

All opinions are moderated before being included (to stop spam). We reserve the right to amend opinions where we deem necessary.

Contact Our News Editors

For any corrections of factual information, or to contact the editors please use our feedback form.

Please send any medical news or health news press releases to:

Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.



View the original article here