Thursday 15 August 2013

New strategy to disarm the dengue virus brings new hope for a universal dengue vaccine

Main Category: Tropical Diseases
Also Included In: Infectious Diseases / Bacteria / Viruses;  Immune System / Vaccines
Article Date: 14 Aug 2013 - 2:00 PDT Current ratings for:
New strategy to disarm the dengue virus brings new hope for a universal dengue vaccine
4 and a half starsnot yet rated

A new strategy that cripples the ability of the dengue virus to escape the host immune system has been discovered by A*STAR's Singapore Immunology Network (SIgN). This breakthrough strategy opens a door of hope to what may become the world's first universal dengue vaccine candidate that can give full protection from all four serotypes of the dreadful virus. This research done in collaboration with Singapore's Novartis Institute of Tropical Diseases (NITD) and Beijing Institute of Microbiology and Epidemiology is published in the PlosPathogens journal, and is also supported by Singapore STOP Dengue Translational and Clinical Research (TCR) Programme grant[1].

Early studies have shown that a sufficiently weakened virus that is still strong enough to generate protective immune response offers the best hope for an effective vaccine. However, over the years of vaccine development, scientists have learnt that the path to finding a virus of appropriate strength is fraught with challenges. This hurdle is compounded by the complexity of the dengue virus. Even though there are only four different serotypes, the fairly high rates of mutation means the virus evolve constantly, and this contributes to the great diversity of the dengue viruses circulating globally. Furthermore, in some cases, the immune response developed following infection by one of the four dengue viruses appears to increase the risk of severe dengue when the same individual is infected with any of the remaining three viruses. With nearly half the world's population at risk of dengue infection and an estimated 400 million people getting infected each year[2], the need for a safe and long-lasting vaccine has never been greater.

The new strategy uncovered in this study overcomes the prevailing challenges of vaccine development by tackling the virus' ability to 'hide' from the host immune system. Dengue virus requires the enzyme called MTase (also known as 2'-O-methyltransferase) to chemically modify its genetic material to escape detection. In this study, the researchers discovered that by introducing a genetic mutation to deactivate the MTase enzyme of the virus, initial cells infected by the weakened MTase mutant virus is immediately recognised as foreign. As a result, the desired outcome of a strong protective immune response is triggered yet at the same time the mutant virus hardly has a chance to spread in the host.

Animal models immunised with the weakened MTase mutant virus were fully protected from a challenge with the normal dengue virus. The researchers went on to demonstrate that the MTase mutant dengue virus cannot infect Aedes mosquitoes. This means that the mutated virus is unable to replicate in the mosquito, and will not be able to spread through mosquitoes into our natural environment. Taken together, the results confirmed that MTase mutant dengue virus is potentially a safe vaccine approach for developing a universal dengue vaccine that protects from all four serotypes.

The team leader, Dr Katja Fink from SIgN said, "There is still no clinically approved vaccine or specific treatment available for dengue, so we are very encouraged by the positive results with this novel vaccine strategy. Our next step will be to work on a vaccine formulation that will confer full protection from all four serotypes with a single injection. If this proves to be safe in humans, it can be a major breakthrough for the dengue vaccine field."

Associate Professor Leo Yee Sin, Clinical Director of Communicable Diseases Centre and Institute of Infectious Disease and Epidemiology at Tan Tock Seng Hospital who heads the Singapore STOP Dengue Translational and Clinical Research (TCR) Programme said, "We are into the seventh decade of dengue vaccine development, this indeed is an exciting breakthrough that brings us a step closer to an effective vaccine."

Acting Executive Director of SIgN, Associate Professor Laurent Rénia said, "Dengue is a major public health problem in many of the tropical countries. We are very delighted that our collaborative efforts with colleagues in Singapore and China have made a promising step towards a cost-effective and safe dengue vaccine to combat the growing threat of dengue worldwide."

About the Singapore Immunology Network (SIgN)
The Singapore Immunology Network (SIgN), officially inaugurated on 15 January 2008, is a research consortium under the Agency for Science, Technology and Research (A*STAR)'s Biomedical Research Council. The mandate of SIgN is to advance human immunology research and participate in international efforts to combat major health problems. Since its launch, SIgN has grown rapidly and currently includes 250 scientists from 26 different countries around the world working under 28 renowned principal investigators. At SIgN, researchers investigate ????immunity during infection and various inflammatory conditions including cancer and are supported by cutting edge technological research platforms and core services.

Through this, SIgN aims to build a strong platform in basic human immunology research for better translation of research findings into clinical applications. SIgN also sets out to establish productive links with local and international institutions, and encourage the exchange of ideas and expertise between academic, industrial and clinical partners and thus contribute to a vibrant research environment in Singapore.

For more information about SIgN, please visit www.sign.a-star.edu.sg.


About STOP Dengue Programme
The 5-year STOP Dengue programme is funded by the National Medical Research Council's S$25 million Translational and Clinical Research (TCR) flagship grant. Started in December 2008, the programme aims to overcome major gaps in the treatment and management of dengue diseases through the translation of our recent research findings. The goal of STOP Dengue TCR is to target zero death from dengue infection in Singapore adults. For more information, please visit http://www.stopdengue.sg. Article adapted by Medical News Today from original press release. Click 'references' tab above for source.
Visit our tropical diseases section for the latest news on this subject. [1] http://www.nmrc.gov.sg/content/nmrc_internet/home/grant/compgrants/tcrinfec.html
[2] Nature, 2013 Apr 25;496(7446):504-7, “The global distribution and burden of dengue”

Rational Design of a Live Attenuated Dengue Vaccine: 2'-O-Methyltransferase Mutants Are Highly Attenuated and Immunogenic in Mice and Macaques

PLoS Pathog 9(8): e1003521. doi:10.1371/journal.ppat.1003521

Roland Züst, Hongping Dong equal contributor, Xiao-Feng Li, David C. Chang, Bo Zhang, Thavamalar Balakrishnan, Ying-Xiu Toh, Tao Jiang, Shi-Hua Li, Yong-Qiang Deng, Brett R. Ellis, Esther M. Ellis, Michael Poidinger, Francesca Zolezzi, Cheng-Feng Qin, Pei-Yong Shi, Katja Fink

Agency for Science, Technology and Research (A*STAR)

Please use one of the following formats to cite this article in your essay, paper or report:

MLA

Science, Agency for. "New strategy to disarm the dengue virus brings new hope for a universal dengue vaccine." Medical News Today. MediLexicon, Intl., 14 Aug. 2013. Web.
14 Aug. 2013. APA

Please note: If no author information is provided, the source is cited instead.


'New strategy to disarm the dengue virus brings new hope for a universal dengue vaccine'

Please note that we publish your name, but we do not publish your email address. It is only used to let you know when your message is published. We do not use it for any other purpose. Please see our privacy policy for more information.

If you write about specific medications or operations, please do not name health care professionals by name.

All opinions are moderated before being included (to stop spam). We reserve the right to amend opinions where we deem necessary.

Contact Our News Editors

For any corrections of factual information, or to contact the editors please use our feedback form.

Please send any medical news or health news press releases to:

Note: Any medical information published on this website is not intended as a substitute for informed medical advice and you should not take any action before consulting with a health care professional. For more information, please read our terms and conditions.



View the original article here

No comments:

Post a Comment